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Background. The success of antiretroviral therapy is known to be compromised by drug-resistant HIV-1 at frequencies
detectable by conventional bulk sequencing. Currently, there is a need to assess the clinical consequences of low-frequency
drug resistant variants occurring below the detection limit of conventional genotyping. Sensitive detection of drug-resistant
subpopulations, however, requires simple and practical methods for routine testing. Methodology. We developed highly-
sensitive and simple real-time PCR assays for nine key drug resistance mutations and show that these tests overcome
substantial sequence heterogeneity in HIV-1 clinical specimens. We specifically used early wildtype virus samples from the pre-
antiretroviral drug era to measure background reactivity and were able to define highly-specific screening cut-offs that are up to
67-fold more sensitive than conventional genotyping. We also demonstrate that sequencing the mutation-specific PCR products
provided a direct and novel strategy to further detect and link associated resistance mutations, allowing easy identification of
multi-drug-resistant variants. Resistance mutation associations revealed in mutation-specific amplicon sequences were verified
by clonal sequencing. Significance. Combined, sensitive real-time PCR testing and mutation-specific amplicon sequencing
provides a powerful and simple approach that allows for improved detection and evaluation of HIV-1 drug resistance mutations.
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INTRODUCTION
Highly active antiretroviral therapy (HAART) can provide sustained

clinical benefit for HIV-1 infected persons, but treatment success is

jeopardized by drug resistance. Drug resistance testing supports the

management of persons on HAART and is recommended to help

guide treatment choices [1]. Resistance-related mutations, however,

are conventionally detected by bulk sequence analysis of viral RNA

from plasma which does not reliably detect variants comprising less

than 20% of the viruses in a sample [2]. Identifying drug-resistant

variants at frequencies below the detection capability of conven-

tional genotyping requires new diagnostic methods. Currently, there

is increasing recognition that identification of low-frequency drug-

resistant viruses is vital for evaluating the full clinical impact of drug

resistance and for understanding the dynamics of drug resistance

emergence and persistence [3–7].

A few seminal studies illustrated the advantages of sensitive drug

resistance assays with women who received intrapartum single-

dose nevirapine (SD-NVP). These reports on sensitive testing for

nevirapine resistance have shown that drug resistance emerges

more frequently and persists longer than previously demonstrated

by conventional sequencing [3,4,5]. Persisting minority nevira-

pine-resistant viruses may contribute to poor virologic responses

when subsequent regimens contain nevirapine-related drugs [6,7].

Accurate accounting of transmitted drug resistance is also

a concern. Because of reduced fitness in the absence of

antiretroviral treatment, transmitted drug-resistant variants can

decay to levels that are undetectable by conventional sequence

analysis [8,9,10]. Therefore, the ability to detect low-frequency

variants would allow for more informed decisions on the selection

of active drugs for both drug-naı̈ve and drug-experienced persons

beginning new treatment regimens.

Early hybridization methods to improve HIV-1 resistance

mutation detection, such as the Line Probe Assay (LiPA), offered

a modest improvement in sensitivity over bulk sequencing but

experienced frequent detection failures due to the considerable

nucleotide polymorphisms present in HIV-1 [11]. More recent

point-mutation assays offer substantial improvements in sensitivity

[12,13,14] and, previously, we had shown that real-time PCR assays

can be both highly specific and sensitive with subtype C viruses from

SD-NVP-experienced women [3]. However, point-mutation assays

are susceptible to polymorphisms and their performance with large-

scale clinical testing is unclear. Moreover, point-mutation testing is

inherently limited in its genotypic information because it does not

detect mutations beyond what is interrogated by the assay. Other

approaches that evaluate numerous virus sequences per sample are

highly-informative research tools but are too complex or costly for

routine clinical testing [15,16,17].

To both simplify and improve the sensitivity of HIV drug

resistance testing, we describe a strategy that combines real-time
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PCR point-mutation assays and direct sequencing of resistance

mutation-specific PCR products to identify and link additional

mutations. For this purpose, we focused on developing and

validating nine assays for key drug resistance mutations in subtype

B HIV-1 clinical specimens as a basis for later expansion to other

virus mutations and subtypes. Because these assays can detect

nearly 2-logs less mutant virus than conventional bulk sequencing

they are able to detect resistance-associated mutations that might

emerge at low frequencies as part of the normal viral quasispecies

[18]. Therefore, to maximize specificity, we used pre-antiretroviral

(pre-ARV) drug era wildtype virus samples to define cutoffs that

exclude the detection of naturally-occurring minority mutants. We

also used primer mixtures and designed mismatches to circumvent

the genomic plasticity of HIV-1 and show high sensitivity on

a large panel of clinical samples. We demonstrate that these assays

are able to detect low-frequency drug resistance and permit easy

identification of linked mutations, thus, providing a practical

strategy for routine drug resistance testing.

METHODS

Virus template amplification
HIV-1 genomic RNA was extracted (Qiagen UltraSens RNA kit)

from 200 mL plasma or serum and reconstituted in 50 mL of buffer

provided with the kit. To ensure sufficient template for repeat

testing, virus sequences were first amplified from 5 mL HIV-1

RNA by reverse transcriptase-polymerase chain reaction (RT-

PCR) using the reverse primer RTP-REV2 [59-CTT CTG TAT

GTC ATT GAC AGT CC], and forward primer RTP-F1 [59-

CCT CAG ATC ACT CTT TGG CAA CG], which span from

n.t. 1 in protease to n.t. 777 in RT. PCR amplification conditions

were 40 cycles of 95uC for 45 seconds, 50uC for 30 seconds, and

72uC for 2 minutes. To better evaluate the success of amplifying

each sample, the reverse transcriptase and PCR amplification

steps were performed separately. We later assessed the validated

procedures could be combined into a one-step RT-PCR to reduce

specimen handling (not shown). When only RT template was

desired, a shorter amplicon generated by the primer pair, RTP-

REV2 and RTP-F2 [59-AAA GTT AAA CAA TGG CCA TTG

ACA G] (n.t. 58 to 777 in RT), was used and occasionally

provided improved amplification sensitivity. Both primer sets were

also successful in generating amplified virus template from proviral

sequences (not shown).

Real-time PCR
Real-time PCR-based mutation-specific assays were developed for

the protease L90M and the reverse transcriptase M41L, K65R,

K70R, K103N, Y181C, M184V, and both T215Y and F

resistance-associated mutations in HIV-1 subtype B. Mutation

testing was performed in 96-well plates using 2 mL of 1:20

dilutions of the RT-PCR products, except that samples with viral

loads below 5000 copies/mL were not diluted. The principle of

the real-time PCR assay is to compare the differential amplifica-

tions of a mutation-specific PCR and a PCR that amplifies all

viruses in the sample (total virus copy reaction) (Figure 1). The

HIV-1 total copy primers, ComFWD and ComREV, span n.t.

258–420 in RT and were used with the common probes, com1P

and 2P (Figure 1A, see Table 1). The same common reaction was

used for all resistance mutation tests to reduce labor and costs. For

multiple mutation screening, several resistance mutation-specific

reactions can be performed simultaneously. The cycle number at

which the fluorescence emission exceeds the background fluores-

cence threshold is the threshold cycle (CT) and is the unit of

measure for comparing the differences in amplification signals

(DCT) between the total copy and mutation-specific reactions

(Figure 1B). All samples were tested in duplicate with the means of

the total copy and mutation-specific CTs used for the de-

termination of the DCT.

The mutation-specific primers (Table 1) were designed to

preferentially anneal with the targeted mutation nucleotide(s), thus

having reduced affinity for wildtype sequences. To accommodate

the various polymorphisms in large populations, degenerate

nucleotides were placed at complementary positions in the

primers. Specificity was enhanced by creating designed mis-

matches at nucleotide(s) -2 to -4 positions from the primer 39-end.

Furthermore, to cover the spectrum of polymorphisms present,

mixtures of multiple degenerate primers were often required.

Mutation-specific primer mixtures were experimentally evaluated

and the ratios that best balanced differences in primer avidities

and minimized cross-interference in primer annealing were

selected. Each change was re-evaluated against wildtype and

mutant samples. For example, the M41L assay combined seven

different mutation-specific primers for the detection of both the

CTT and CTC mutant codons within the polymorphic sequences

of the resistant samples.

The real-time PCR probes anneal to sequences within the total

copy and mutation-specific amplicons and merely act as reporters

of primer extension. The probes were 59labeled with FAM (6-

carboxyfluorescein) and internally quenched with a black-hole

quencher (BHQ) placed at the positions indicated by the quotation

marks (‘‘ ‘‘) in Table 1. In the probe design, the quencher was

placed between 9–18 nucleotides from the 59 FAM-labeled base at

the position providing the best quenching of background

fluorescence. Fluorescent signals, reported as relative fluorescent

units (RFU), were generated by degradation of the fluorescent

probes which resulted in the separation of the fluorophore from the

quencher during each round of chain elongation. The threshold for

each test was set at an RFU level that corresponded to the beginning

of the log phase of the amplification curves. For additional

information on the use of probes and interpretation of DCT see

the supporting information on assay design in Method S1.

Real-time PCRs were initiated with a hot-start incubation at

94uC for 11 minutes before proceeding to 45 cycles of melting at

94uC for 30 seconds, annealing at 50uC for 15 seconds and

extension at 60uC for 30 seconds. All reactions were performed in

a total volume of 50 mL/well in 96-well PCR plates using iCycler

real-time PCR thermocyclers with optical units (Bio-Rad) and

AmpliTaq Gold polymerase (2.5 U/reaction; Applied Biosystems).

Final reagent concentrations were 320 nM for the forward and

reverse primers, 160 nM probe(s), and 400 mM dNTPs. Low viral

load samples that generated total copy CTs which appeared after

26 cycles sometimes yielded false-positive results. To avoid this

complication, all samples with CTs above 26 cycles were further

amplified by nested PCR prior to real-time PCR testing. To

adequately subtract background fluorescence, high virus load

samples that produced total copy CTs appearing less than 10

cycles were diluted 1:100–1000 in RNase/DNase-free reagent-grade

water and retested. We found that 1:20 dilutions of RT-PCR

products from all but the samples with virus loads below 5000

copies/ml provided adequate template for real-time PCR testing.

Assay evaluations on plasmids and clinical

specimens
Each mutation-specific primer mixture was initially evaluated

against both cloned lab-generated and patient-derived mutant

virus sequences that were serially diluted 10-fold in backgrounds of

wildtype sequence plasmids. The supporting information on
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plasmid evaluations in Method S2 describes the use of cloned virus

sequences for the preliminary selection of mutation-specific

primers and determining assay absolute detection limits.

To both evaluate the frequency of natural polymorphisms at

codons associated with drug resistance and establish assay cutoffs

for screening subtype B virus infections, we tested 138 serum

samples collected from 117 individuals infected with HIV-1 in the

US between 1982–1985, prior to the era of antiretroviral drug use.

Within these early HIV specimens were longitudinal samples from

23 individuals which were examined for evidence of polymorphic

changes over time. Assay sensitivities for clinical screening were

determined using samples from a total of 302 individuals with drug

resistance mutations detectable by bulk sequence genotyping. The

resistance mutation samples were collected in the US and Canada

during 1998–2005, and included a portion of US samples from

a previously reported surveillance study [19]. We evaluated

archived specimens which the CDC Institutional Review Board

determined did not involve research on identifiable subjects.

Samples with resistance mutations were obtained from 51

individuals with protease L90M, and those with reverse transcrip-

tase mutations included 78 subjects with M41L, 26 with K65R, 59

with K70R, 81 with K103N, 28 with Y181C, 67 with M184V, 44

with T215Y, and 35 with T215F. To increase the stringency of

assay evaluations, specimens with substantial numbers of poly-

morphisms in primer binding sites were included.

For the purpose of clinical testing, each assay cutoff was placed

at a DCT that excluded all the early wildtype virus samples and,

when possible, was at least one amplification cycle less than the

lowest pre-antiretroviral wildtype DCT as an added buffer against

non-specific reactivity. It is expected that the sensitivities observed

with plasmid dilutions may not be achievable for some clinical

samples because of low virus copy numbers or genomic differences

which affect primer performance.

Low-frequency mutation detection
After validating the assays on early wildtype and known mutant

viruses, we sought to demonstrate the ease with which the sensitive

assays could detect low-frequency mutations. Tests for five resistance

mutations were applied to a small assortment of convenient mutant

virus clinical samples previously used in assay validation that had no

evidence of the targeted mutation by standard genotyping. Tests for

A/G

C/T

RT-PCR:
(generic)

Figure 1. Principle of the real-time PCR assay. A. HIV-1 template generated from RT-PCR of viral RNA is subjected to both total copy and mutation-
specific real-time reactions. B. The difference in the total copy and mutation-specific reactions (DCT) is used to differentiate mutant and wildtype
specimens. In this example, the experimental cutoff is a DCT of 10.5 cycles. A mutation-specific CT within 10.5 cycles of the total copy reaction CT
would indicate the presence of mutant virus.
doi:10.1371/journal.pone.0000638.g001
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Table 1. Oligonucleotides for real-time PCR drug resistance testing.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Oligonucleotide sequence Proportion

Total copy reaction ComFWD 59-CTT CTG GGA AGT TCA ATT AGG AAT ACC

ComREV 59-TGG TGT CTC ATT GTT TRT ACT AGG TA

Com 1P 59-FAM-TGG ATG TGG GTG A‘‘T’’G CAT ATT TYT CAR TTC CCT TA 60%

Com 2P 59-FAM-TAC TGG ATG ‘‘T’’ GGG TGA TGC ATA TTT TTC ART TCC CTT A 40%

Mutation

Protease

L90M Rev1 a 59-GAA AAT TTA AAG TGC AAC CAA KTT GAG TGA T -

Fwd 59-AGA TCA CTC TTT GGC AAC GAC C -

P1 59-FAM-TAG GGG GAA ‘‘T’’TG GAG GTT TTR TCA AAG TAA GAC AGT AT -

Reverse transcriptase

M41L F1 59-AAT AAA AGC ATT ART RGA AAT YTG TRC AGC AT 35%

F2 59-AAT WAA AGC ATT ART RGA AAT YTG TRC WGC AT 10%

F3 59-AAA AGC ATT ART RGA AAT YTG TRC AGG AC 32%

F4 59-TAA AAG CAT TAR TRG AAA TYT GTR CAK GTC 13%

F5 59-AAG CAT TAR TRG AAA TYT GTR CAK GGC 10%

Rev 59-CCT AAT TGA ACT TCC CAG AAG TCT TG -

59-FAM-TTG GGC CTG AAA A‘‘T’’C CAT ACA ATA CTC CAG TAT TT -

K65R F1 59- ACA ATA CTC CAR TAT TTG CCA TAA RCA G -

Rev 59-CCT GGT GTC TCA TTG TTT ATA CTA GGT -

P1 59-FAM- TCA GAG AAC ‘‘T’’ TAA TAA RAG AAC TCA AGA CTT CTG GGA 80%

P2 59-FAM-TCA GAG AAC ‘‘T’’ CAA TAA GAG AAC TCA AGA CTT CTG GGA 20%

K70R Rev1a 59- GTT CTC TRA AAT CTA YTA WTT TTC TCC CTC 70%

Rev2 a 59-TTC TCT RAA ATC TAY TAW TTT TCT CCC CC 30%

Fwd 59- AGA RAT TTG TAC AGA RAT GGA AAA GGA AG -

59-FAM-TTG GGC CTG AAA A‘‘T’’C CAT ACA ATA CTC CAG TAT TT -

K103N F1 59-TCC HGC AGG GTT AAA RAA GGA C 40%

F2 59-ACA TCC MGC AGG GTT AAA AMA GGA T 27%

F3 59-CAT CCM GCA GGG TTA AAR VAG GAT 11%

F4 59-CAT CCI GCA GGI TTA AAA AAG GGC 10%

F5 59- T CCC KCW GGG TTA ARA AGG GAC 12%

Rev 59-TGG TGT CTC ATT GTT TRT ACT AGG TA -

59- com.3P 59-FAM-TGG ATG TGG GTG A‘‘T’’G CAT ATT TTT CAR TTC CCT TA

Y181C F1 59-AGR AAA CAA AAY CCA GAM ATA RTT GGC TG 35%

F2 59- ARA AAA CAA AAY CCA GAM ATA RTT GGA TG 20%

F3 59-AGR AAA CAA AAY CCA GAT MTA RTT GGC TG 15%

F4 59- ARA AAA AAA AAY CCA GAC MTA RTT GGC TG 10%

F5 59-AAA ACA AAA YCC AGA RAT ART CGG CTG 10%

F6 59-AAA ACA AAA YCC AGA RAT ART SGG CTG 10%

Rev 59-ATC AGG ATG GAG TTC ATA ACC CA -

P1 59-FAM-TAG GAT CTG ACT TAG AAA ‘‘T’’ AGG RCA GCA TAG ARC 80%

P2 59-FAM-TAG GAT CTG ATT ‘‘T’’ AGA AAT AGG RCA GCA TAG ARC 20%

M184V F1 59-AAA TCC ARA MMT ART TAT MTR TCA GCA CG (ID No. 33) 55%

F2 59-AAA TCC ARA MAT AGW RAT MTR TCA GCA CG (NEW) 25%

F3 59-AAA YCC ARA MAT ART TAT CTR YCA GCA TG (ID No. 35) 20%

Rev 59- ATC AGG ATG GAG TTC ATA ACC CA

P1 59-FAM-TAG GAT CTG ACT TAG AAA ‘‘T’’ AGG RCA GCA TAG ARC

P2 59-FAM-TAG GAT CTG ATT ‘‘T’’ AGA AAT AGG RCA GCA TAG ARC

T215Y* Rev1 a 59-CTT TCT GAT GTT TYT KGT CTG GTG GAT 20%

Rev2 a 59-TTT CTG ATG TTT YTK GTC TGG TGC GT 33%

Rev3 a 59-TTT CTG ATR CTT TTY GTC TGG TGC GT 22%
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L90M, K103N, Y181C, M184V and T215Y were applied to 30, 19,

13, 11 and 10 specimens, respectively.

Assessing mutation associations in mutation-

specific amplicons
To overcome the single mutation detection limitation of point-

mutation assays, we evaluated whether additional information on

resistance mutations could be gained from the real-time PCR assays.

To address this, we performed direct sequencing (BigDye reagent,

Prism 3130XL analyzer, Applied Biosystems) of the products from

positive mutation-specific reactions and compared these to their

respective sample bulk sequence for evidence of nucleotide

differences. In order to include other codons of interest with the

K103N test, we extended the amplicon by using the 184V REV

reverse primer (Table 1), which allowed sequencing to RT codon

221. Any other resistance mutation(s) found in the mutation-specific

amplicon would indicate that they were on the same viral strand(s) as

the mutation that was specifically targeted in the reaction. The

absence of nucleotide mixtures at resistance codons within mutation-

specific amplicons is informative because it indicates the targeted

mutation is entirely associated with those mutations. Conversely,

nucleotide mixtures suggest that the interrogated mutation is linked

to more than one resistance genotype.

Clonal sequencing
To verify mutation associations depicted in the sequences of

mutation-specific amplicons, nested amplifications of the original

RT-PCRs were cloned into the TA vector (Invitrogen) for E. coli

transformation [3]. Colonies were screened with the same assay

used for the low frequency mutation detection and positive clones

were sequence analyzed as above.

RESULTS

Assay sensitivities on cloned virus sequences
Relative limits of detection were compared in a simple laboratory

setting using serial dilutions of cloned mutant template. The DCT

that was equivalent to a 0.5 log greater reactivity than the wildtype

mean DCT on the dilution curve was used to compare assay

sensitivities (Figure 2). This approach yielded detection limits of

0.001% and 0.02% for L90M and K103N, respectively. Absolute

detection limits for the remaining assays were likewise determined

on cloned control samples and the corresponding frequencies

found to be 0.02% for M41L, 0.05% for K70R, 0.08% for K65R,

Y181C, M184V, and T215F, and 0.2% for T215Y (Table 2).

Assay sensitivity and performance with clinical

samples
The viral RNA extraction from plasma followed by the RTP-F1-

RTP-REV2 RT-PCR could amplify as little as 10 input RNA

copies when using the total copy primers to detect amplified

product (data not shown). In some cases, as little as 5 RNA copies

could be amplified with the RTP-F2 and RTP-REV2 RT-only

primer pair. However, to obtain sufficient amplification with both

the total copy and mutation-specific reactions with majority

mutant virus samples, around 20–80 input RNA copies were

required depending on the assay.

Assay cutoff values intended for population-wide clinical

screening were established using 138 patient-derived wildtype

specimens collected before the era of ARV drug treatment.

Following the selection of each assay cut-off, assay sensitivity was

evaluated using a total of 302 samples with sequence-detectable

drug resistance mutations.

With some longitudinal wildtype samples collected in the pre-

ARV drug era, we observed DCTs that differed as much as 6.5

cycles between time points. The greatest DCT decrease was seen

with K70R, which resulted in this assay having the narrowest

window of mutation detection (Figure 3). The DCT variation with

longitudinal samples suggested that mutations at positions

associated with drug resistance can naturally arise and fluctuate

over time within individuals. Using the L90M assay as an example,

the resulting distribution of collated DCTs from the pre-ARV era

wildtype samples supported a DCT cutoff of 10.5 cycles for L90M

clinical testing (DCTs ranged from 12.0–28.0 cycles) (Figure 3).

Extrapolating from the dilution curve for cloned L90M sequences,

this placement corresponded to a frequency mean of 0.2% mutant

virus (see Figure 2). At this cut-off, all 51 genotyped 90M samples

were positive (DCTs ranged from -9.1 to 5.2 cycles) (Table 2). The

Oligonucleotide sequence Proportion

Rev4 a 59- TTT CTG ATG TTT KTT GTC TGG GGC GT 10%

Rev5 a 59- TTT CTG ATG CTT TYT TTC TGG TGC GT 15%

ComFwd 59-CTT CTG GGA AGT TCA ATT AGG AAT ACC -

Com 1P 59-FAM-TGG ATG TGG GTG A‘‘T’’G CAT ATT TYT CAR TTC CCT TA 60%

Com 2P 59-FAM-TAC TGG ATG ‘‘T’’ GGG TGA TGC ATA TTT TTC ART TCC CTT A 40%

T215F# Rev1 a 59-TTT CTG ATG TTT YTG KTC TGG TGC GA 50%

Rev2 a 59-CTT TCT GAT GTT TYT GKT CTG GTG CAA 50%

ComFwd 59-CTT CTG GGA AGT TCA ATT AGG AAT ACC -

Com 1P 59-FAM-TGG ATG TGG GTG A‘‘T’’G CAT ATT TYT CAR TTC CCT TA 60%

Com 2P 59-FAM-TAC TGG ATG ‘‘T’’ GGG TGA TGC ATA TTT TTC ART TCC CTT A 40%

FAM, 5-fluoro;
‘‘’’, nucleotide position where quencher is placed;
aserves as mutation-specific primer;
*includes intermediates 215D, H, and N;
#includes intermediates 215L, I and V.
doi:10.1371/journal.pone.0000638.t001

Table 1. cont.
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tests for mutations in the HIV-1 reverse transcriptase were likewise

evaluated and the resulting assay limits and performances are

provided in Table 2 and Figure 3. For each assay, the mean DCTs

of the specimens documented to have mutations were significantly

lower than the DCTs of the wildtype samples (all p values

,0.0001, T-test).

Because of unusual polymorphisms, some samples comprised

almost entirely of mutant virus produced DCTs near or above the

cutoff. In these situations, elevated DCTs resulting from weak

primer binding could be interpreted as mutant viruses present at

low frequencies. Hence, this testing format is best-suited to provide

highly specific population-level resistance screening and is not

necessarily applicable to mutant virus quantitation.

Identification of low-frequency mutations and

confirmation by cloning
To demonstrate the ability of real-time PCR assays to detect drug-

resistant viruses present as minor variants in specimens, assays for

L90M, K103N, Y181C, M184V and T215Y were applied to

assortment of clinical samples that had major resistance mutations,

but had no evidence of the targeted mutation by bulk sequencing.

Each assay identified at least one mutant sample with a hidden

low-frequency mutation in the few samples tested. L90M was

identified in 2/30 samples (DCTs = 1.0, 5.0 cycles), K103N in

3/19 (DCTs = 7.6, 7.7, 9.8), Y181C in 1/13 (DCT = 7.6), M184V

in 2/11 (DCTs = 5.9, 7.3), and T215Y in 1 of 10 samples

(DCT = 5.6). One representative low-frequency variant for each of

the five mutations tested was verified by clonal sequencing which

found the mutation frequencies to be between 0.7%–11%.

Linking high and low-frequency resistance

mutations
To overcome the point-mutation testing limitation of single

mutation detection, we directly sequenced positive mutation-

specific PCR products to ascertain whether additional genotypic

information could be easily obtained. Two samples that demon-

strate the usefulness of this approach are described. Bulk

sequencing of one sample showed nucleotide mixtures in the RT

at the resistance-associated codons G190G/A, L210L/W and an

undecipherable mixture at codon 215 in reverse transcriptase

(sample ‘A’) (Figure 4A). This sample was tested with both the

T215Y and T215F PCR assays, but was found to be positive for only

the T215Y mutation (DCT = 4.1). Direct sequencing of the T215Y-

100        10           1          0.1       0.01     0.001

% 103N

% 90M

100        10           1          0.1       0.01     0.001

A

B

Figure 2. Mutation-specific assay reactivity on plasmids. Cloned L90M
(A.) and K103N (B.) mutant virus sequence was diluted 10-fold, from
100% to 0.001%, in backgrounds of wildtype sequence to determine
assay detection limits. Plotted are the mean DCT versus log10 of the
mutant dilution series (N), and the mean DCT for wildtype sequence
alone (&). The lower detection limit (lower dotted line) was placed at
the DCT equivalent to 0.5 log10 below (0.5-log greater reactivity than)
the wildtype DCT. Dilutions that fall outside the linear range are not
considered. For comparison, the mutant virus frequency equivalences
for the established clinical cutoffs are also shown (dashed line).
doi:10.1371/journal.pone.0000638.g002

Table 2. Assay DCT measures, cutoffs, and sensitivities on clinical samples.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Assay
DCT cutoff
(# cycles)

Cutoff mean %
mutant equivalence

Sensitivity, #Pos/
mutants tested (%)

Mean DCT (range) of pre-ART
wildtype n = 138

Mean DCT (range) of
mutant samples

False-negatives,
DCTs

L90M 10.5 0.4 51/51 (100) 16.8 (12.0–28.0) 0.9 (29.1–5.2) -

M41L 10.0 0.8 76/78 (97) 16.4 (11.2–21.0) 4.4 (25.8–10.0) 12.1, 16.5

K65R 8.5 0.3 26/26 (100) 10.9 (9.1–11.8) 1.3 (20.4–5.8) -

K70R 7.0 2.0 57/59 (97) 11.6 (7.2–20.1) 2.2 (22.6–6.2) 7.4, 9.0

K103N 10.0 0.9 80/81 (99) 15.7 (10.2–25.0) 5.8 (2.7–9.7) 11.3

Y181C 10.0 1.0 27/28 (96) 14.3 (11.2–21.1) 6.4 (3.1–9.6) 12.6

M184V 8.5 0.5 65/67 (97) 11.6 (8.7–30.9) 5.0 (1.2–8.2) 9.8, 11.9

T215Y* 10.5 1.0 44/44 (100) 13.9 (11.5–16.4) 6.0 (2.4–9.6) -

T215F# 10.5 0.7 35/35 (100) 14.4 (11.9–23.8) 3.6 (1.2–5.8) -

Pre-ART, pre-antiretroviral drug use;
*includes intermediates 215D, H and N;
#includes intermediates 215L, I, and V.
doi:10.1371/journal.pone.0000638.t002..
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positive amplicon revealed that both the G190A and L210W

mutations were present as unmixed codons (Figure 4A). The

mutation-specific sequence resolved the resistance mutation at codon

215 and suggested all three mutations (G190A, L210W, and T215Y)

were linked on the same genome. The co-linkage of all three

mutations was confirmed in 6 of 6 T215Y-positive clones. A second

sample (sample ‘B’, Figure 4B) that had only T215F and K219Q

mutations by bulk genotyping was positive for low-frequency K103N

using the extended K103N assay (DCT = 9.8). The sequence of the

K103N-positive amplicon contained the K219Q mutation and

a T215F/V mixture. Also in this amplicon was another low-

frequency mutation, M184V, which appeared as a 50% mixture

with wildtype sequence. Hence, the K103N-specific sequence

showed that low-frequency K103N mutants were associated with

K219Q, M184V and M, and T215F and V. Clonal sequencing

confirmed K103N in 3/81 clones (4%) obtained from the sample

and all 3 clones verified K103N was linked with K219Q. Two of the

clones also had the M184V and T215V mutations. The two clonal

genotypes are provided in Figure S1. The ability to resolve codon

219 in the extended K103N mutation-specific sequence demon-

strated that resistance mutations as far apart as 117 amino acids

could be evaluated for linkage.

DISCUSSION
We describe a simple and sensitive approach for mutant virus

screening that is able to detect drug-selected resistance mutations

at frequencies as low as 0.3% in clinical samples, allowing for the

identification of minority HIV-1 variants. The real-time PCR-
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Figure 3. Assay reactivities with clinical samples having sequence-detectable mutations and with pre-antiretroviral wildtype virus samples. The
range of reactivity for each assay is shown for wildtype and mutant samples. The upper and lower DCT and the mean (hash) for each group are
indicated. Assay cutoffs (horizontal line) were established to exclude all wildtype viruses from the pre-antiretroviral era.
doi:10.1371/journal.pone.0000638.g003
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based point mutation assays were robust with the 474 total subtype

B virus specimens evaluated, supporting their use for clinical

testing. Improved low-frequency mutation detection was provided

by clinical testing cutoffs that were 10–67-fold more sensitive than

conventional sequencing. These cutoffs were above the back-

ground reactivities observed with drug-naı̈ve wildtype HIV

collected in the pre-antiretroviral drug era and, thus, identify

mutations occurring at frequencies above those found naturally in

virus quasispecies. Although this paper focused on resistance

mutation testing in subtype B viruses, we earlier demonstrated that

real-time PCR assays can also be successfully developed for

subtype C viruses which are globally the most prevalent [3]. When

possible, oligonucleotides are designed so that they might also be

used with more than one subtype; however, screening for

resistance in non-B subtypes requires that the oligonucleotides

are properly validated for those subtypes.

Setting stringent assay cutoffs to avoid detecting natural

polymorphisms resulted in primer designs that provided sensitiv-

ities of 96% to .99% and specificities of .99% with samples that

included highly polymorphic sequences (Table 2). Although the

real-time PCR assays were able to detect as little as 0.001%–0.2%

cloned mutant sequences, increasing DCT cutoffs to expand the

mutation detection range would make it difficult to differentiate

drug-selected mutants from naturally-occurring variants. Howev-

er, in antiretroviral studies of infected persons in which pre-drug

exposure samples are available, a comparative method could be

B

184V/M 215F/V 219Q

R T G G A T G  G A T  T C K T C   A C A C  C A G   A C  C  A  AA C A A A T C A
G G A T T C K T C A C A C C A G A C C A A

103N

… …

103N amplicon

M184 215F 219Q

C

G  G A T  T C T  T CA C A C  C A G A C  C A A
… …

A A A A A T C A A T G G  A T

K103

Bulk sequence

A

215Y amplicon

T G  G A A G T G G G G G  T  T T  T A C

210W190A

T A T G T A G C A

215Y214F

…

Bulk sequence

210L/W190G/A

T K G A R  R T G G G G G Y  T  T WM MT A T G T A G  S A

215X214F/L

…

Figure 4. Detection of other associated resistance mutations in mutation-specific amplicons. A. The undecipherable codon 215 in the bulk
sequence of this sample was resolved (positive) with the T215Y test. The sequence of the T215Y-positive amplicon showed that the mutations
present in the bulk sequence were linked. B. The low-frequency K103N amplicon sequence from this sample uncovered another previously
undetected mutation, M184V. 215X, undecipherable codon 215.
doi:10.1371/journal.pone.0000638.g004
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used to evaluate drug resistance rather than an absolute DCT cut-

off. In these settings, a substantial decrease in DCT between the

pre- and post-treatment samples for an individual could indicate

the emergence of a mutation even if the DCT does not drop below

the cut-off established for screening. Furthermore, in experimental

settings where baseline genotypes are known, individual primers

that best match the virus sequence may be used, instead of

mixtures, to maximize assay sensitivity.

Evidence of improved resistance mutation detection was found

in testing only a few samples which uncovered hidden mutations.

However, to overcome the limitation of single mutation detection,

we directly sequenced mutation-specific reactions as a simple way

to rapidly assess mutation associations and demonstrated that the

genotypic findings were similar to that obtained by cloning virus

templates. Sequencing mutation-specific amplicons also identified

additional low-frequency drug resistance mutations when they

were linked to the targeted mutation, as was seen with the

discovery of M184V in sample B. Therefore, previously hidden

multi-drug resistance could easily be uncovered.

Sensitive testing can be streamlined by using a tailored and

concise panel of mutation-specific tests that span the protease and

RT regions, followed by sequencing the mutation-specific

amplicons from positive tests to evaluate for linked mutations.

This would allow for sensitive primary screening of resistance as

well as the identification of other mutations present in the

individual. The capacity to identify linked mutations could be

important for understanding the persistence [20] and clinical

impact of mutant variants.

In conclusion, we present a panel of real-time PCR assays that

provide a sensitive and user-friendly method for screening HIV-1

drug resistance mutations. The substantial oligonucleotide mod-

ifications that allowed for successful detection of mutations within

diverse sequence backgrounds, combined with extensive validation

and improved sensitivity, make these assays feasible for large-scale

resistance testing. Furthermore, coupling mutation-specific se-

quencing to sensitive screening expands the capability of point-

mutation testing and provides a powerful approach for studying

the dynamics and clinical consequences of drug-resistant HIV-1.

The simplicity of this methodology and the abundance of real-time

PCR materials currently make sensitive PCR assays more practical

for broader drug resistance testing than the more complex and

expensive testing methods.

SUPPORTING INFORMATION

Figure S1 The HXB2 RT nucleotides, bulk sequence of sample

B, and sample B low-frequency K103N clones are shown. The

sites of the codon 103, 184, 215 and 219 resistance-associated

nucleotides are underlined (_). Dots (.) over the sequences indicate

nucleotides that differ from HXB2. A ‘C’ at 103 = K103N, a ‘G’ at

184 = M184V, a ‘TT’ at 215 = T215F, a ‘GT’ at 215 = T215V,

and a ‘C’ at 219 = K219Q.

Found at: doi:10.1371/journal.pone.0000638.s001 (0.01 MB

PDF)

Method S1 PCR assay design.

Found at: doi:10.1371/journal.pone.0000638.s002 (0.03 MB

DOC)

Method S2 Assay evaluations on plasmids.

Found at: doi:10.1371/journal.pone.0000638.s003 (0.03 MB

DOC)
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